FINAL PROJECT - LS 1336

DESIGN OF LOADING - DISCHARGING AND RE-LIQUEFACTION SYSTEM ON PT. PUPUK SRIWIDJAJA 6000 m³ AMMONIA TANKER

ADITYA DWI DYATMIKA WIJAYA
NRP 4205 100 019

Supervisor
Ir Hari Prastowo, M.Sc

DEPARTMENT OF MARINE ENGINEERING
Faculty of Marine Technology
Sepuluh Nopember Institute of Technology
Surabaya 2009
FINAL PROJECT - LS 1336

DESIGN OF LOADING - DISCHARGING AND RE-LIQUEFACTION SYSTEM ON PT. PUPUK SRIWIDJAJA 6000 m³ AMMONIA TANKER

ADITYA DWI DYATMIKA WIJAYA
NRP 4205 100 019

Supervisor
Ir. Hari Prastowo, MSc

DEPARTMENT OF MARINE ENGINEERING
Faculty of Marine Technology
Sepuluh Nopember Institute of Technology
Surabaya 2009
TUGAS AKHIR - LS 1336

DESAIN SISTEM BONGKAR MUAT DAN SISTEM RE-LIQUEFACTION PADA TANKER AMMONIA 6000 m³ MILIK PT. PUPUK SRIWIDJAJA

ADITYA DWI DYATMIKA WIJAYA
NRP 4205 100 019

Dosen Pembimbing
Ir. Hari Prastowo, MSc

JURUSAN TEKNIK SISTEM PERKAPALAN
Fakultas Teknologi Kelautan
Institut Teknologi Sepuluh Nopember
Surabaya 2009
ABSTRACT
DESIGN OF LOADING – DISCHARGING AND RE-LIQUEFACTION SYSTEM ON PT. PUPUK SRIWIDJAJA 6000 m³ AMMONIA TANKER

Name : Aditya Dwi Dyatmika Wijaya
NRP : 4205 100 019
Department : Marine Engineering
Supervisor : Ir. Hari Prastowo, Msc

Abstract,

PT. Pupuk Sriwidjaja (PUSRI) would like to build new Ammonia Tanker to supply ammonia which is one of their side product. The ship designed has 119.30 m of Lpp, 20.40 m of Breadth, 8.30 m of Depth, 4.25 m of Draught and 6000 cbm capacity of cargo tank that is shared in two cargo tanks. This Final Project will deliver the design of ship’s loading – discharging and ammonia re-liquefaction systems. Loading – discharging process in Ammonia Tanker must be done with certain equipment and procedure, because the system will be operated in very low temperature and corrosive condition. Material that can be used in the pipping system and another equipments of loading – discharging process must be in accordance with Classification Society and codes requirements. So does the re-liquefaction plant which is used to change the ammonia vapour into the liquid phase, its must obedient the requirements with certain standarts to materials selection of the equipments that included in the re-liquefaction system. Phase changing of ammonia from liquid into gases is caused by high ambient temperature that transfered into the cargoes by the vessel’s hull and pressure increasing in the cargo tank that caused by ammonia which is change into the vapour state and give the pressure to the void space in the cargo tank.

Keyword : ammonia tanker, design, loading – discharging, re-liquefaction, equipments specification.
(This page is intentionally left blank)
Nama Mahasiswa : Aditya Dwi Dyatmika Wijaya
NRP : 4205 100 019
Jurusan : Teknik Sistem Perkapalan
Dosen Pembimbing : Ir. Hari Prastowo, Msc
Abstrak,
PT. Pupuk Sriwidjaja (PUSRI) berencana untuk membangun sebuah kapal tanker ammonia baru yang akan digunakan untuk mengangkut ammonia yang merupakan produk sampingan dari PUSRI. Kapal yang akan dibangun tersebut mempunyai dimensi Lpp 199.30 m, lebar kapal 20.40 m, tinggi kapal 8.30 m, sarat kapal 4.25 m serta mempunyai volume ruang muat 6000 m³ yang terbagi dalam dua ruang muat.. Tugas Akhir ini akan memberikan desain dari sistem bongkar muat dan re-liquefaction pada tanker ammonia tersebut. Sistem bongkar muat pada tanker ammonia harus dilakukan dengan menggunakan peralatan serta prosedur yang tepat karena sistem akan bekerja pada kondisi temperatur yang sangat rendah serta korosif. Material yang dapat digunakan dalam system perpipaan serta peralatan – peralatan lainnya dalam system bongkar muat harus memenuhi persyaratan – persyaratan klasifikasi. Begitu juga dengan system re-liquefaction yang merupakan system untuk mengubah ammonia yang berupa gas menjadi cair, harus memenuhi persyaratan pada klasifikasi yang sesuai dalam pemilihan material pada peralatan – peralatannya. Perubahan fase ammonia dari cair menjadi gas dapat disebabkan oleh tingginya temperatur luar yang merambat ke dalam muatan melalui lambung kapal. Penguapan ammonia ini dapat menimbulkan peningkatan tekanan dalam ruang muat yang dapat menyebabkan ledakan yang berbahaya.

Kata kunci : tanker ammonia, desain, bongkar muat, re-liquefaction, spesifikasi peralatan
LEGALITY SHEET

DESIGN OF LOADING – DISCHARGING AND RE-LIQUEFACTION SYSTEM ON PT. PUPUK SRIWIDJAJA 6000 m³ AMMONIA TANKER

FINAL PROJECT
This final project report submitted to the Department of Marine Engineering Faculty of Marine Technology Sepuluh Nopember Institute of Technology (ITS) Surabaya In partial fulfillment of the requirement for the Degree of Bachelor of Engineering (Sarjana Teknik)

Arranged by :

ADITYA DWI DYATMIKA WIJAYA
NRP. 4205 100 019

Approved by Supervisor of Final Project :

Ir. Hari Prastowo, MSc (Supervisor)

SURABAYA
JUNE, 2009
(This page is intentionally left blank)
LEGALITY SHEET

DESIGN OF LOADING – DISCHARGING AND RE-LIQUEFACTION SYSTEM ON PT. PUPUK SRIWIDJAJA 6000 m³ AMMONIA TANKER

FINAL PROJECT
This final project report submitted to the
Department of Marine Engineering
Faculty of Marine Technology
Sepuluh Nopember Institute of Technology (ITS)
Surabaya
In partial fulfillment of the requirement for the
Degree of Bachelor of Engineering (Sarjana Teknik)

Arranged by:

ADITYA DWI DYATMIKA WIJAYA
NRP. 4205 100 019

Approved by
Head of Marine Engineering Department:

Ir. Alam Baheramsyah, MSc
NIP. 131 993 365

SURABAYA
JUNE, 2009

ix
(This page is intentionally left blank)
ACKNOWLEDGEMENTS

Grateful to Jesus Christ from the deepest of my heart, because with His Bless I can finish my Final Project and my study on time. I believe that without His Mercy, I can not get everything which I have now. Beside that, I would like to say thanks very much to:

1. Mr. Hari Prastowo as my Supervisor in Final Project, who always give me support and advices.
2. Mr. Alam Baheramsyah as Head of Marine Engineering Department.
3. Mr. Taufik Fajar as Final Project Coordinator.
4. My Parents, especially my Mother in heaven who always give me support and praying for me.
5. Natalia Wijayanti, who always give me support and help me to survive in every problem.
6. All of Marine machinery and System Lectures as my Examiners.
7. And all of my Friends in Magneeforce 2005 of Marine Engineering ITS.

Author realizes there are many mistakes in this Final Project. Therefore, hopefully reader can give suggestions and criticisms for this Final Project to develop a better Final Project afterwards.

Surabaya, June 2009

Author
LIST OF CONTENTS

Cover .. i
Abstract .. iii
Abstrak ... v
Legality Sheet ... vii
Acknowledgements ... xi
List of Contents .. xiii
List of Figures ... xvii

CHAPTER I INTRODUCTION
1.1 Background ... I – 1
1.2 Problem Definition ... I – 3
1.3 Constraints ... I – 3
1.4 Objectives .. I – 4
1.5 The Benefits of Final Project .. I – 4

CHAPTER II STUDY LITERATURE
2.1 Fundamental Concepts of Ammonia .. II – 1
 2.1.1 Definition of Ammonia .. II – 1
 2.1.2 Characteristics of Ammonia ... II – 1
2.2 Liquefaction of Ammonia Gases ... II – 4
 2.2.1 Heat Transfers in Ammonia .. II – 4
 2.2.2 Process of Gas Liquefaction ... II – 6
2.3 Fundamental Concepts of Loading –
 Discharging and Gas Handling .. II – 8
 2.3.1 Head in Ammonia Loading –
 Discharging System .. II – 8
 2.3.2 Ammonia Loading – Discharging
 Process .. II – 11
 2.2.3 Ammonia Gas Handling .. II – 12

CHAPTER III METHODOLOGY
3.1 Collecting Datas ... III – 2
3.2 Process Flow Diagram of Loading –
 Discharging and Re-liquefaction System III – 2
3.3 Owner Requirements ... III – 2
3.4 Calculation Accoeding Owner Requirements . III – 3
3.5 Meet The Specification of System With Owner Requirements .. III – 3
3.6 Detailed Calculation Involving Rules and Codes That Applied in The Vessel III – 3
3.7 Meet Specification of System With Related Rules and Codes III – 4
3.8 Basic Design of System III – 4
3.9 Final Checking and Revision III – 4
3.10 Final Design of System III – 4

CHAPTER IV DATA ANALYSIS AND CALCULATION

4.1 General ... IV – 1
4.2 System Designing and Equipments Determination .. IV – 1

4.2.1 Designing Loading – Discharging System .. IV – 1
 a). Design Conditions IV – 4
 b). Calculation of Cargo Area
 Installation .. IV – 8
 c). Head Calculation in Suction Side IV – 8
 d). Head Calculation in Discharge Side .. IV – 9
 e). Cargo Pump That Required IV – 10
 f). Loading – Discharging Valves IV – 12

4.2.2 Designing Stripping System IV – 13
 a). Design Conditions IV – 13
 b). Calculation of Cargo Area
 Installation .. IV – 16
 c). Head Calculation in Suction Side IV – 16
 d). Head Calculation in Discharge Side .. IV – 18
 e). Stripping Pump That Required IV – 20
 f). Stripping Valves .. IV – 22

4.2.3 Designing Re-liquefaction System IV – 24

4.2.3.1 Booster Pump Calculation IV – 25
 a). Design Conditions IV – 25
b). Calculation of Cargo Area Installation IV – 28
c). Head Calculation in Suction Side IV – 29
d). Head Calculation in Discharge Side IV – 30
e). Stripping Pump That Required IV – 32
f). Stripping Valves IV – 33

4.2.3.2 Vaporizer Calculation IV – 34
4.2.3.3 Compressor Calculation IV – 37
4.2.3.4 Condenser Calculation IV – 41

4.3 Overview of equipments IV – 44

CHAPTER V CONCLUSIONS AND RECOMMENDATION

5.1 Conclusions .. IV – 1
5.2 Recommendation IV – 3

REFERENCES
APPENDIX
BIOBIBLIOGRAPHY
(This page is intentionally left blank)
LIST OF FIGURES

Figure 1. Picture of Ammonia Tanker I – 1
Figure 2. Process Flow Diagram of Loading –
 Discharging and Re-liquefaction System
 of Ammonia .. I – 3
Figure 3. Chemical Structure of AmmoniaII – 1
Figure 4. Triangular Pyramid of AmmoniaII – 2
Figure 5. Diagram of Horizontal Shell and Tube
 Ammonia Condenser ..II – 4
Figure 6. Horizontal Ammonia ReceiverII – 8
Figure 7. Fundamental Installation of Fluid TransferII – 8
Figure 8. Flow Diagram of Ammonia in The VesselII – 12
Figure 9. Equipments Involved in The Ammonia
 Re-liquefaction SystemII – 12
Figure 10. Flowchart of Final Project Execution Process ..III – 1
Figure 11. Process Flow Diagram of Loading –
 Discharging System ..IV – 3
Figure 12. Deepwell Cargo PumpIV – 7
Figure 13. Process Flow Diagram of Re-liquefaction
 System ..IV – 25